Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Medicine (Baltimore) ; 100(7): e24537, 2021 Feb 19.
Article in English | MEDLINE | ID: covidwho-1091184

ABSTRACT

BACKGROUND: The role of coagulation dysfunction in Severe Coronavirus Disease 2019 (COVID-19) is inconsistent. We aimed to explore the impact of coagulation dysfunction amongst patients with COVID-19. METHODS: We searched PubMed, Cochrane and Embase databases from December 1, 2019 to April 27, 2020 following Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines. Data about coagulation (Platelets, PT, APTT, fibrin, fibrinogen degradation products, D-dimer), prevalence of coagulation dysfunction and mortality were extracted. Meta regression was used to explore the heterogeneity. RESULTS: Sixteen observational studies were included, comprising 2, 139 patients with confirmed COVID-19. More severe COVID-19 cases tended to have higher mean D-dimer (SMD 0.78, 95% CI 0.53 to 1.03, P < .001). The similar pattern occurred with PT and fibrin, with a contrary trend for PLTs. Coagulation dysfunction was more frequent in severe cases compared to less severe (SMD 0.46, 95% CI 0.25 to 0.67, P < .001). Higher mortality was associated with COVID-19-related coagulopathy (RR 10.86, 2.86 to 41.24, P < .001). Prevalence of ARDS was increased in more severe patients than less severe cases (RR 16.52, 11.27 to 24.22, P < .001). PT, fibrin and D-dimer levels elevated significantly in non-survivors during hospitalization. CONCLUSION: Presence of coagulation dysfunction might be associated with COVID-19 severity, and coagulopathy might be associated with mortality. Coagulation markers including PT, fibrin and D-dimer may imply the progression of COVID-19. This illuminates the necessity of effectively monitoring coagulation function for preventing COVID-19-related coagulopathy, especially in severe patients. For the obvious heterogeneity, the quality of the evidence is compromised. Future rigorous randomized controlled trials that assess the correlation between coagulation and COVID-19 are needed. TRIAL REGISTRATION: PROSPERO (CRD42020183514).


Subject(s)
Blood Coagulation Disorders/virology , Blood Coagulation Factors , COVID-19/complications , Biomarkers/blood , Blood Coagulation Disorders/mortality , COVID-19/mortality , Humans , SARS-CoV-2
2.
Ann Palliat Med ; 10(3): 2723-2735, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1068176

ABSTRACT

BACKGROUND: New evidence from retrospective cohort studies on risk of death from COVID-19 infection became available. We aimed to systematically review the clinical risk factors for fatal outcome of COVID-19. METHODS: We performed meta-analysis, using PubMed, EMBASE and Cochrane databases from December 1 2019 to June 10 2020. The meta-analysis summarized clinical, laboratory, radiological features, and complications of non-survivors with confirmed COVID-19. In addition, a fixed- or random-effects model was adopted based on the heterogeneity among studies. We also used funnel-plot with Egger's tests to screen potential publication bias. RESULTS: In total, twenty studies with 15,408 COVID-19 cases were included in our meta-analysis. Male, current smoking, and older age were associated with in-hospital death. Patients aged 60 years or over had the highest pooled ORs [OR 4.94 (2.89, 8.44)]. Non-survivors were more likely to have diabetes, hypertension, cardiovascular disease (CVD), respiratory disease, or chronic kidney disease (CKD). Respiratory disease had the highest pooled ORs [OR 2.55 (2.14, 3.05)]. Dyspnea [OR 3.31 (1.78, 6.16); I2 : 83%] and fatigue [OR 1.36 (1.07, 1.73); I2 : 0%] were associated with increased risk of death. Increased white blood cell count, decreased lymphocyte and platelet counts, were also associated with increased risk of death. Biomarkers of coagulation function, inflammation, liver and kidney function, cardiac and muscle injury were also elevated in nonsurvivors. CONCLUSIONS: Male, current smoking patients aged 60 years or over might face a greater risk of in-hospital death and the comorbidities such as diabetes, hypertension, CVD, respiratory disease, and CKD could also influence the prognosis of the COVID-19. Clinical feature such as dyspnea and fatigue could imply the exacerbation and even death. Our findings highlighted early markers of mortality which were beneficial to identify fatal COVID-19.


Subject(s)
COVID-19/mortality , Hospital Mortality , Age Factors , Comorbidity , Humans , Retrospective Studies , Risk Factors , Sex Factors
3.
Ther Adv Respir Dis ; 14: 1753466620942129, 2020.
Article in English | MEDLINE | ID: covidwho-656093

ABSTRACT

BACKGROUND: In December of 2019, coronavirus disease 2019 (Covid-19) was reported in Wuhan, China, and has now rapidly swept around the world. Much research has been carried out since the outbreak, but few studies have focused on the dysfunction of the adaptive immunity. METHODS: In this retrospective and multi-center study, 373 patients with laboratory-confirmed COVID-19 from Shanghai Public Health Clinical Center and Affiliated Hospital of Putian University were recruited. Demographic, clinical, radiological features, and laboratory data were recorded and analyzed at admission and at discharge. Results of immunological tests were followed up until the patients were discharged. RESULTS: Of the 373 patients with COVID-19 pneumonia, 322 were in the non-severe group and 51 were in the severe group. Number of T cells, CD4+ and CD8+ T cells, and total lymphocytes declined remarkably upon admission and elevated when the patients were discharged. At admission, counts of total lymphocytes, T cells, CD4+ and CD8+ T cells, and levels of C3 and C4 in the severe group were lower than those in the non-severe group, whereas the neutrophil to lymphocyte ratio (NLR) was higher in the severe group. Counts of T cells, CD4+ and CD8+ T cells, and total lymphocytes were negatively correlated with lactate dehydrogenase and C-reactive protein. CONCLUSION: COVID-19 might target adaptive immunity and cause a decrease in lymphocytes, especially T cells and subsets. Physicians should pay close attention to the adaptive immunity of patients upon admission. Monitoring NLR, T lymphocytes, and subsets would help physicians with the proper diagnosis and treatment of COVID-19.The reviews of this paper are available via the supplemental material section.


Subject(s)
Adaptive Immunity/immunology , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , China/epidemiology , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Female , Humans , Male , Middle Aged , Neutrophils/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Retrospective Studies , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL